Processing math: 100%

Наибольшее и наименьшее значение производной

Подобные задачи относятся к вопросам исследования функции и графиков, в том числе задач, когда функция не указана явно, а задан только график функции.
Для решения таких задач нужно знать следующее:
  • Производная функции в точке равна угловому коэффициенту касательной к графику функции в данной точке. Угловой коэффициент касательной в свою очередь равен тангенсу угла наклона этой касательной.
  • Производная — это скорость изменения функции. На интервалах возрастания функции производная имеет положительное значение. На интервалах убывания функции производная имеет отрицательное значение.
  • Если функция имеет в точке локального экстремума производную, то эта производная равна нулю.

Рассмотрим график некоторой функции (в данном случае y=xcos(x)). Требуется определить, в каких точка производная функции принимает свои наименьшие и наибольшие значения:
Наибольшее и наименьшее значение производной

Точки B,D,F,G,I,K являются локальными экстремумами. Касательная в этих точка параллельна оси x, соответственно производная в этих точках равна нулю.
В точках A,E,H функция возрастает, следовательно производная в этих точках положительна.
В точках C,J функция убывает, следовательно производная в этих точках отрицательна.

Получаем наибольшее значение производная функции принимает в одной из точек A,E,H. Наименьшее значение производная функции принимает в одной из точек C,J.
Чтобы выбрать точку с наибольшей (наименьшей) производной, необходимо провести касательные к графику в точках и выбрать те точки, в которых касательная "вертикальнее".
Наибольшее и наименьшее значение производной

Получаем, в данном случае, наименьшее значение производной в точке J, наибольшее значение в точке H. Если заданы две точки на одном интервале возрастания (убывания), то наибольшее (наименьшее) значение будет в точке находящейся ближе к точке перегиба.

Чтобы убедиться в наших результатах, посмотрим на совмещенный график функции и производной функции:
Наибольшее и наименьшее значение производной
Как видим, все наши рассуждения верны.

В случае если функция задана в явном виде, то задачу можно свести к нахождению производной и стандартному алгоритму исследования функции.

Комментариев нет:

Отправить комментарий